
Bugzilla Documentation
Release 0.2

David Burns

October 08, 2015

Contents

1 Installing Bugsy 3

2 Using Bugsy 5
2.1 Getting a bug from Bugzilla . 5
2.2 Creating a new bug . 5
2.3 Searching Bugzilla . 5
2.4 Comments . 6

3 Indices and tables 619

Python Module Index 621

i

ii

Bugzilla Documentation, Release 0.2

Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Contents 1

Bugzilla Documentation, Release 0.2

2 Contents

CHAPTER 1

Installing Bugsy

To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

3

Bugzilla Documentation, Release 0.2

4 Chapter 1. Installing Bugsy

CHAPTER 2

Using Bugsy

2.1 Getting a bug from Bugzilla

Getting a bug is quite simple. Create a Bugsy object and then get the bug number that you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

2.2 Creating a new bug

To create a new bug, create a Bug object, populate it with the items that you need and then use the Bugsy object to put
the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

2.3 Searching Bugzilla

To search for bugs you will need to create a Bugsy object and then you can call search_for and chain the search. The
Search API is a Fluent API - you just chain the items that you need and then call search when the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

5

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

2.4 Comments

Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4.1 Welcome to Bugsy!

Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy

To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla

Getting a bug is quite simple. Create a Bugsy object and then get the bug number that you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

6 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Creating a new bug

To create a new bug, create a Bug object, populate it with the items that you need and then use the Bugsy object to put
the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla

To search for bugs you will need to create a Bugsy object and then you can call search_for and chain the search. The
Search API is a Fluent API - you just chain the items that you need and then call search when the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments

Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

2.4. Comments 7

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

8 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")

2.4. Comments 9

Bugzilla Documentation, Release 0.2

bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

10 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

2.4. Comments 11

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

12 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 13

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

14 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 15

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

16 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 17

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

18 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 19

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

20 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 21

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

22 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 23

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

24 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 25

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

26 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 27

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

28 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 29

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

30 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 31

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

32 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 33

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

34 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 35

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

36 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 37

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

38 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 39

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

40 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 41

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

42 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 43

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

44 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 45

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

46 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 47

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

48 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 49

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

50 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 51

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

52 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 53

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

54 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 55

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

56 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 57

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

58 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 59

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

60 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 61

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

62 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 63

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

64 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 65

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

66 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 67

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

68 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 69

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

70 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 71

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

72 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 73

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

74 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 75

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

76 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 77

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

78 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 79

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

80 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 81

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

82 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 83

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

84 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 85

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

86 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 87

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

88 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 89

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

90 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 91

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

92 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 93

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

94 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 95

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

96 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 97

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

98 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 99

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

100 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 101

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

102 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 103

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

104 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 105

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

106 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 107

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

108 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 109

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

110 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 111

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

112 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 113

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

114 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 115

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

116 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 117

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

118 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 119

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

120 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 121

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

122 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 123

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

124 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

2.4. Comments 125

Bugzilla Documentation, Release 0.2

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

126 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 127

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

128 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 129

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

130 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 131

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

132 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 133

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

134 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 135

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

136 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 137

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

138 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 139

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

140 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 141

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

142 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 143

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

144 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 145

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

146 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 147

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

148 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 149

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

150 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 151

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

152 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 153

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

154 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 155

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

156 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 157

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

158 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 159

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

160 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 161

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

162 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 163

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

164 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 165

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

166 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 167

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

168 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 169

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

170 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 171

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

172 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 173

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

174 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 175

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

176 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 177

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

178 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 179

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

180 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 181

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

182 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 183

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

184 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 185

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

186 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 187

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

188 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 189

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

190 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 191

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

192 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 193

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

194 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 195

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

196 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 197

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

198 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 199

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

200 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 201

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

202 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 203

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

204 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 205

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

206 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 207

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

208 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 209

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

210 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 211

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

212 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 213

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

214 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 215

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

216 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 217

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

218 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 219

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

220 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 221

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

222 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 223

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

224 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 225

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

226 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 227

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

228 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 229

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

230 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 231

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

232 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 233

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

234 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 235

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

236 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 237

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

238 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 239

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

240 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 241

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

242 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 243

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

244 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 245

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

246 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 247

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

248 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 249

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

250 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 251

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

252 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 253

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

254 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 255

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

256 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 257

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

258 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 259

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

260 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 261

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

262 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 263

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

264 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 265

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

266 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 267

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

268 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 269

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

270 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 271

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

272 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 273

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

274 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 275

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

276 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 277

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

278 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 279

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

280 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 281

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

282 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 283

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

284 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 285

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

286 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 287

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

288 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 289

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

290 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 291

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

292 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 293

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

294 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 295

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

296 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 297

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

298 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 299

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

300 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 301

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

302 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 303

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

304 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 305

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

306 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 307

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

308 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 309

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

310 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 311

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

312 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 313

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

314 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 315

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

316 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 317

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

318 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 319

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

320 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 321

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

322 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 323

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

324 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 325

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

326 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 327

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

328 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 329

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

330 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 331

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

332 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 333

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

334 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 335

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

336 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 337

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

338 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 339

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

340 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 341

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

342 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 343

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

344 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 345

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

346 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 347

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

348 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 349

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

350 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 351

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

352 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 353

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

354 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 355

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

356 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 357

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

358 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 359

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

360 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 361

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

362 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 363

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

364 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 365

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

366 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 367

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

368 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 369

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

370 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 371

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

372 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 373

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

374 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 375

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

376 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 377

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

378 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 379

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

380 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 381

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

382 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 383

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

384 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 385

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

386 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 387

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

388 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 389

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

390 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 391

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

392 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 393

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

394 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 395

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

396 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 397

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

398 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 399

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

400 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 401

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

402 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 403

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

404 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 405

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

406 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 407

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

408 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 409

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

410 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 411

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

412 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 413

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

414 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 415

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

416 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 417

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

418 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 419

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

420 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 421

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

422 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 423

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

424 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 425

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

426 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 427

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

428 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 429

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

430 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 431

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

432 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 433

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

434 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 435

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

436 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 437

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

438 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 439

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

440 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 441

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

442 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 443

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

444 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 445

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

446 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 447

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

448 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 449

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

450 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 451

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

452 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 453

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

454 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 455

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

456 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 457

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

458 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 459

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

460 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 461

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

462 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 463

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

464 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 465

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

466 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 467

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

468 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 469

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

470 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 471

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

472 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 473

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

474 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 475

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

476 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 477

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

478 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 479

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

480 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 481

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

482 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 483

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

484 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 485

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

486 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 487

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

488 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 489

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

490 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 491

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

492 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 493

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

494 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 495

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

496 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 497

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

498 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 499

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

500 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 501

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

502 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 503

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

504 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 505

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

506 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 507

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

508 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 509

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

510 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 511

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

512 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 513

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

514 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 515

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

516 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 517

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

518 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 519

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

520 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 521

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

522 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 523

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

524 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 525

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

526 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 527

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

528 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 529

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

530 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 531

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

532 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 533

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

534 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 535

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

536 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 537

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

538 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 539

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

540 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 541

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

542 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 543

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

544 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 545

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

546 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 547

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

548 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 549

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

550 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 551

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

552 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 553

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

554 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 555

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

556 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 557

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

558 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

2.4. Comments 559

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

560 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

2.4. Comments 561

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

562 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 563

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

564 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

2.4. Comments 565

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

566 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

2.4. Comments 567

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

568 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

2.4. Comments 569

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

570 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

2.4. Comments 571

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

572 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

2.4. Comments 573

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

574 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4. Comments 575

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

576 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 577

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

578 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 579

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

580 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 581

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

582 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

2.4. Comments 583

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

584 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 585

Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

586 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

2.4. Comments 587

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

588 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

2.4. Comments 589

Bugzilla Documentation, Release 0.2

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

590 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

2.4. Comments 591

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

592 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4. Comments 593

Bugzilla Documentation, Release 0.2

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

594 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

2.4. Comments 595

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

596 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

2.4. Comments 597

Bugzilla Documentation, Release 0.2

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

598 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 599

Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

600 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

2.4. Comments 601

Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

602 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

2.4. Comments 603

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

604 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

2.4. Comments 605

Bugzilla Documentation, Release 0.2

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

606 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

2.4. Comments 607

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

608 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

2.4. Comments 609

Bugzilla Documentation, Release 0.2

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

610 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 611

Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4.2 Indices and tables

• genindex

• modindex

• search

2.4.3 Bugsy

class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

612 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4.4 Bug

class bugsy.Bug(bugsy=None, **kwargs)
This represents a Bugzilla Bug

2.4. Comments 613

https://bugzilla.mozilla.org/rest

Bugzilla Documentation, Release 0.2

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

614 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

Bugzilla Documentation, Release 0.2

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4.5 Comment

Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

2.4. Comments 615

Bugzilla Documentation, Release 0.2

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

2.4.6 Search

Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

616 Chapter 2. Using Bugsy

Bugzilla Documentation, Release 0.2

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

2.4. Comments 617

Bugzilla Documentation, Release 0.2

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

618 Chapter 2. Using Bugsy

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

619

Bugzilla Documentation, Release 0.2

620 Chapter 3. Indices and tables

Python Module Index

b
bugsy, 616

621

Bugzilla Documentation, Release 0.2

622 Python Module Index

Index

Symbols
__init__() (bugsy.Bug method), 127, 133, 138, 144, 149,

154, 160, 165, 171, 176, 181, 187, 192, 198,
203, 208, 214, 219, 225, 230, 235, 241, 246,
252, 257, 262, 268, 273, 279, 284, 289, 295,
300, 306, 311, 316, 322, 327, 333, 338, 343,
349, 354, 360, 365, 370, 376, 381, 387, 392,
397, 403, 408, 414, 419, 424, 430, 435, 441,
446, 451, 457, 462, 468, 473, 478, 484, 489,
495, 500, 505, 511, 516, 522, 527, 532, 538,
543, 549, 554, 559, 565, 570, 576, 581, 586,
592, 597, 603, 608, 614

__init__() (bugsy.Bugsy method), 126, 132, 137, 142,
148, 153, 159, 164, 169, 175, 180, 186, 191,
196, 202, 207, 213, 218, 223, 229, 234, 240,
245, 250, 256, 261, 267, 272, 277, 283, 288,
294, 299, 304, 310, 315, 321, 326, 331, 337,
342, 348, 353, 358, 364, 369, 375, 380, 385,
391, 396, 402, 407, 412, 418, 423, 429, 434,
439, 445, 450, 456, 461, 466, 472, 477, 483,
488, 493, 499, 504, 510, 515, 520, 526, 531,
537, 542, 547, 553, 558, 564, 569, 574, 580,
585, 591, 596, 601, 607, 612

__init__() (bugsy.Search method), 130, 135, 141, 146,
152, 157, 162, 168, 173, 179, 184, 189, 195,
200, 206, 211, 216, 222, 227, 233, 238, 243,
249, 254, 260, 265, 270, 276, 281, 287, 292,
297, 303, 308, 314, 319, 324, 330, 335, 341,
346, 351, 357, 362, 368, 373, 378, 384, 389,
395, 400, 405, 411, 416, 422, 427, 432, 438,
443, 449, 454, 459, 465, 470, 476, 481, 486,
492, 497, 503, 508, 513, 519, 524, 530, 535,
540, 546, 551, 557, 562, 567, 573, 578, 584,
589, 594, 600, 605, 611, 616

__weakref__ (bugsy.Bug attribute), 128, 133, 138, 144,
149, 155, 160, 165, 171, 176, 182, 187, 192,
198, 203, 209, 214, 219, 225, 230, 236, 241,
246, 252, 257, 263, 268, 273, 279, 284, 290,
295, 300, 306, 311, 317, 322, 327, 333, 338,
344, 349, 354, 360, 365, 371, 376, 381, 387,

392, 398, 403, 408, 414, 419, 425, 430, 435,
441, 446, 452, 457, 462, 468, 473, 479, 484,
489, 495, 500, 506, 511, 516, 522, 527, 533,
538, 543, 549, 554, 560, 565, 570, 576, 581,
587, 592, 597, 603, 608, 614

__weakref__ (bugsy.Bugsy attribute), 127, 132, 137, 143,
148, 154, 159, 164, 170, 175, 181, 186, 191,
197, 202, 208, 213, 218, 224, 229, 235, 240,
245, 251, 256, 262, 267, 272, 278, 283, 289,
294, 299, 305, 310, 316, 321, 326, 332, 337,
343, 348, 353, 359, 364, 370, 375, 380, 386,
391, 397, 402, 407, 413, 418, 424, 429, 434,
440, 445, 451, 456, 461, 467, 472, 478, 483,
488, 494, 499, 505, 510, 515, 521, 526, 532,
537, 542, 548, 553, 559, 564, 569, 575, 580,
586, 591, 596, 602, 607, 613

__weakref__ (bugsy.Search attribute), 130, 136, 141, 146,
152, 157, 163, 168, 173, 179, 184, 190, 195,
200, 206, 211, 217, 222, 227, 233, 238, 244,
249, 254, 260, 265, 271, 276, 281, 287, 292,
298, 303, 308, 314, 319, 325, 330, 335, 341,
346, 352, 357, 362, 368, 373, 379, 384, 389,
395, 400, 406, 411, 416, 422, 427, 433, 438,
443, 449, 454, 460, 465, 470, 476, 481, 487,
492, 497, 503, 508, 514, 519, 524, 530, 535,
541, 546, 551, 557, 562, 568, 573, 578, 584,
589, 595, 600, 605, 611, 616

A
add_comment() (bugsy.Bug method), 128, 133, 138, 144,

149, 155, 160, 165, 171, 176, 182, 187, 192,
198, 203, 209, 214, 219, 225, 230, 236, 241,
246, 252, 257, 263, 268, 273, 279, 284, 290,
295, 300, 306, 311, 317, 322, 327, 333, 338,
344, 349, 354, 360, 365, 371, 376, 381, 387,
392, 398, 403, 408, 414, 419, 425, 430, 435,
441, 446, 452, 457, 462, 468, 473, 479, 484,
489, 495, 500, 506, 511, 516, 522, 527, 533,
538, 543, 549, 554, 560, 565, 570, 576, 581,
587, 592, 597, 603, 608, 614

add_tags() (bugsy.Comment method), 129, 135, 140, 145,

623

Bugzilla Documentation, Release 0.2

151, 156, 162, 167, 172, 178, 183, 189, 194,
199, 205, 210, 216, 221, 226, 232, 237, 243,
248, 253, 259, 264, 270, 275, 280, 286, 291,
297, 302, 307, 313, 318, 324, 329, 334, 340,
345, 351, 356, 361, 367, 372, 378, 383, 388,
394, 399, 405, 410, 415, 421, 426, 432, 437,
442, 448, 453, 459, 464, 469, 475, 480, 486,
491, 496, 502, 507, 513, 518, 523, 529, 534,
540, 545, 550, 556, 561, 567, 572, 577, 583,
588, 594, 599, 604, 610, 615

assigned_to (bugsy.Bug attribute), 128, 133, 139, 144,
149, 155, 160, 166, 171, 176, 182, 187, 193,
198, 203, 209, 214, 220, 225, 230, 236, 241,
247, 252, 257, 263, 268, 274, 279, 284, 290,
295, 301, 306, 311, 317, 322, 328, 333, 338,
344, 349, 355, 360, 365, 371, 376, 382, 387,
392, 398, 403, 409, 414, 419, 425, 430, 436,
441, 446, 452, 457, 463, 468, 473, 479, 484,
490, 495, 500, 506, 511, 517, 522, 527, 533,
538, 544, 549, 554, 560, 565, 571, 576, 581,
587, 592, 598, 603, 608, 614

assigned_to() (bugsy.Search method), 130, 136, 141, 146,
152, 157, 163, 168, 173, 179, 184, 190, 195,
200, 206, 211, 217, 222, 227, 233, 238, 244,
249, 254, 260, 265, 271, 276, 281, 287, 292,
298, 303, 308, 314, 319, 325, 330, 335, 341,
346, 352, 357, 362, 368, 373, 379, 384, 389,
395, 400, 406, 411, 416, 422, 427, 433, 438,
443, 449, 454, 460, 465, 470, 476, 481, 487,
492, 497, 503, 508, 514, 519, 524, 530, 535,
541, 546, 551, 557, 562, 568, 573, 578, 584,
589, 595, 600, 605, 611, 616

attachment_id (bugsy.Comment attribute), 129, 135, 140,
145, 151, 156, 162, 167, 172, 178, 183, 189,
194, 199, 205, 210, 216, 221, 226, 232, 237,
243, 248, 253, 259, 264, 270, 275, 280, 286,
291, 297, 302, 307, 313, 318, 324, 329, 334,
340, 345, 351, 356, 361, 367, 372, 378, 383,
388, 394, 399, 405, 410, 415, 421, 426, 432,
437, 442, 448, 453, 459, 464, 469, 475, 480,
486, 491, 496, 502, 507, 513, 518, 523, 529,
534, 540, 545, 550, 556, 561, 567, 572, 577,
583, 588, 594, 599, 604, 610, 615

author (bugsy.Comment attribute), 129, 135, 140, 146,
151, 156, 162, 167, 173, 178, 183, 189, 194,
200, 205, 210, 216, 221, 227, 232, 237, 243,
248, 254, 259, 264, 270, 275, 281, 286, 291,
297, 302, 308, 313, 318, 324, 329, 335, 340,
345, 351, 356, 362, 367, 372, 378, 383, 389,
394, 399, 405, 410, 416, 421, 426, 432, 437,
443, 448, 453, 459, 464, 470, 475, 480, 486,
491, 497, 502, 507, 513, 518, 524, 529, 534,
540, 545, 551, 556, 561, 567, 572, 578, 583,
588, 594, 599, 605, 610, 616

B
Bug (class in bugsy), 127, 133, 138, 144, 149, 154, 160,

165, 171, 176, 181, 187, 192, 198, 203, 208,
214, 219, 225, 230, 235, 241, 246, 252, 257,
262, 268, 273, 279, 284, 289, 295, 300, 306,
311, 316, 322, 327, 333, 338, 343, 349, 354,
360, 365, 370, 376, 381, 387, 392, 397, 403,
408, 414, 419, 424, 430, 435, 441, 446, 451,
457, 462, 468, 473, 478, 484, 489, 495, 500,
505, 511, 516, 522, 527, 532, 538, 543, 549,
554, 559, 565, 570, 576, 581, 586, 592, 597,
603, 608, 613

bug_id (bugsy.Comment attribute), 129, 135, 140, 146,
151, 156, 162, 167, 173, 178, 183, 189, 194,
200, 205, 210, 216, 221, 227, 232, 237, 243,
248, 254, 259, 264, 270, 275, 281, 286, 291,
297, 302, 308, 313, 318, 324, 329, 335, 340,
345, 351, 356, 362, 367, 372, 378, 383, 389,
394, 399, 405, 410, 416, 421, 426, 432, 437,
443, 448, 453, 459, 464, 470, 475, 480, 486,
491, 497, 502, 507, 513, 518, 524, 529, 534,
540, 545, 551, 556, 561, 567, 572, 578, 583,
588, 594, 599, 605, 610, 616

bug_number() (bugsy.Search method), 130, 136, 141,
146, 152, 157, 163, 168, 173, 179, 184, 190,
195, 200, 206, 211, 217, 222, 227, 233, 238,
244, 249, 254, 260, 265, 271, 276, 281, 287,
292, 298, 303, 308, 314, 319, 325, 330, 335,
341, 346, 352, 357, 362, 368, 373, 379, 384,
389, 395, 400, 406, 411, 416, 422, 427, 433,
438, 443, 449, 454, 460, 465, 470, 476, 481,
487, 492, 497, 503, 508, 514, 519, 524, 530,
535, 541, 546, 551, 557, 562, 568, 573, 578,
584, 589, 595, 600, 605, 611, 617

BugException (class in bugsy), 129, 134, 140, 145, 151,
156, 161, 167, 172, 178, 183, 188, 194, 199,
205, 210, 215, 221, 226, 232, 237, 242, 248,
253, 259, 264, 269, 275, 280, 286, 291, 296,
302, 307, 313, 318, 323, 329, 334, 340, 345,
350, 356, 361, 367, 372, 377, 383, 388, 394,
399, 404, 410, 415, 421, 426, 431, 437, 442,
448, 453, 458, 464, 469, 475, 480, 485, 491,
496, 502, 507, 512, 518, 523, 529, 534, 539,
545, 550, 556, 561, 566, 572, 577, 583, 588,
593, 599, 604, 610, 615

Bugsy (class in bugsy), 126, 132, 137, 142, 148, 153, 159,
164, 169, 175, 180, 186, 191, 196, 202, 207,
213, 218, 223, 229, 234, 240, 245, 250, 256,
261, 267, 272, 277, 283, 288, 294, 299, 304,
310, 315, 321, 326, 331, 337, 342, 348, 353,
358, 364, 369, 375, 380, 385, 391, 396, 402,
407, 412, 418, 423, 429, 434, 439, 445, 450,
456, 461, 466, 472, 477, 483, 488, 493, 499,
504, 510, 515, 520, 526, 531, 537, 542, 547,

624 Index

Bugzilla Documentation, Release 0.2

553, 558, 564, 569, 574, 580, 585, 591, 596,
601, 607, 612

bugsy (module), 126, 127, 129, 130, 132, 133, 135,
137, 138, 140–142, 144–146, 148, 149, 151–
154, 156, 157, 159, 160, 162, 164, 165, 167–
169, 171–173, 175, 176, 178–181, 183, 184,
186, 187, 189, 191, 192, 194–196, 198–200,
202, 203, 205–208, 210, 211, 213, 214, 216,
218, 219, 221–223, 225–227, 229, 230, 232–
235, 237, 238, 240, 241, 243, 245, 246, 248–
250, 252–254, 256, 257, 259–262, 264, 265,
267, 268, 270, 272, 273, 275–277, 279–281,
283, 284, 286–289, 291, 292, 294, 295, 297,
299, 300, 302–304, 306–308, 310, 311, 313–
316, 318, 319, 321, 322, 324, 326, 327, 329–
331, 333–335, 337, 338, 340–343, 345, 346,
348, 349, 351, 353, 354, 356–358, 360–362,
364, 365, 367–370, 372, 373, 375, 376, 378,
380, 381, 383–385, 387–389, 391, 392, 394–
397, 399, 400, 402, 403, 405, 407, 408, 410–
412, 414–416, 418, 419, 421–424, 426, 427,
429, 430, 432, 434, 435, 437–439, 441–443,
445, 446, 448–451, 453, 454, 456, 457, 459,
461, 462, 464–466, 468–470, 472, 473, 475–
478, 480, 481, 483, 484, 486, 488, 489, 491–
493, 495–497, 499, 500, 502–505, 507, 508,
510, 511, 513, 515, 516, 518–520, 522–524,
526, 527, 529–532, 534, 535, 537, 538, 540,
542, 543, 545–547, 549–551, 553, 554, 556–
559, 561, 562, 564, 565, 567, 569, 570, 572–
574, 576–578, 580, 581, 583–586, 588, 589,
591, 592, 594, 596, 597, 599–601, 603–605,
607, 608, 610–613, 615, 616

BugsyException (class in bugsy), 127, 133, 138, 143, 149,
154, 160, 165, 170, 176, 181, 187, 192, 197,
203, 208, 214, 219, 224, 230, 235, 241, 246,
251, 257, 262, 268, 273, 278, 284, 289, 295,
300, 305, 311, 316, 322, 327, 332, 338, 343,
349, 354, 359, 365, 370, 376, 381, 386, 392,
397, 403, 408, 413, 419, 424, 430, 435, 440,
446, 451, 457, 462, 467, 473, 478, 484, 489,
494, 500, 505, 511, 516, 521, 527, 532, 538,
543, 548, 554, 559, 565, 570, 575, 581, 586,
592, 597, 602, 608, 613

C
change_history_fields() (bugsy.Search method), 130, 136,

141, 147, 152, 157, 163, 168, 174, 179, 184,
190, 195, 201, 206, 211, 217, 222, 228, 233,
238, 244, 249, 255, 260, 265, 271, 276, 282,
287, 292, 298, 303, 309, 314, 319, 325, 330,
336, 341, 346, 352, 357, 363, 368, 373, 379,
384, 390, 395, 400, 406, 411, 417, 422, 427,
433, 438, 444, 449, 454, 460, 465, 471, 476,

481, 487, 492, 498, 503, 508, 514, 519, 525,
530, 535, 541, 546, 552, 557, 562, 568, 573,
579, 584, 589, 595, 600, 606, 611, 617

Comment (class in bugsy), 129, 135, 140, 145, 151, 156,
162, 167, 172, 178, 183, 189, 194, 199, 205,
210, 216, 221, 226, 232, 237, 243, 248, 253,
259, 264, 270, 275, 280, 286, 291, 297, 302,
307, 313, 318, 324, 329, 334, 340, 345, 351,
356, 361, 367, 372, 378, 383, 388, 394, 399,
405, 410, 415, 421, 426, 432, 437, 442, 448,
453, 459, 464, 469, 475, 480, 486, 491, 496,
502, 507, 513, 518, 523, 529, 534, 540, 545,
550, 556, 561, 567, 572, 577, 583, 588, 594,
599, 604, 610, 615

component (bugsy.Bug attribute), 128, 133, 139, 144,
150, 155, 160, 166, 171, 177, 182, 187, 193,
198, 204, 209, 214, 220, 225, 231, 236, 241,
247, 252, 258, 263, 268, 274, 279, 285, 290,
295, 301, 306, 312, 317, 322, 328, 333, 339,
344, 349, 355, 360, 366, 371, 376, 382, 387,
393, 398, 403, 409, 414, 420, 425, 430, 436,
441, 447, 452, 457, 463, 468, 474, 479, 484,
490, 495, 501, 506, 511, 517, 522, 528, 533,
538, 544, 549, 555, 560, 565, 571, 576, 582,
587, 592, 598, 603, 609, 614

creation_time (bugsy.Comment attribute), 129, 135, 140,
146, 151, 156, 162, 167, 173, 178, 183, 189,
194, 200, 205, 210, 216, 221, 227, 232, 237,
243, 248, 254, 259, 264, 270, 275, 281, 286,
291, 297, 302, 308, 313, 318, 324, 329, 335,
340, 345, 351, 356, 362, 367, 372, 378, 383,
389, 394, 399, 405, 410, 416, 421, 426, 432,
437, 443, 448, 453, 459, 464, 470, 475, 480,
486, 491, 497, 502, 507, 513, 518, 524, 529,
534, 540, 545, 551, 556, 561, 567, 572, 578,
583, 588, 594, 599, 605, 610, 616

creator (bugsy.Comment attribute), 130, 135, 140, 146,
151, 157, 162, 167, 173, 178, 184, 189, 194,
200, 205, 211, 216, 221, 227, 232, 238, 243,
248, 254, 259, 265, 270, 275, 281, 286, 292,
297, 302, 308, 313, 319, 324, 329, 335, 340,
346, 351, 356, 362, 367, 373, 378, 383, 389,
394, 400, 405, 410, 416, 421, 427, 432, 437,
443, 448, 454, 459, 464, 470, 475, 481, 486,
491, 497, 502, 508, 513, 518, 524, 529, 535,
540, 545, 551, 556, 562, 567, 572, 578, 583,
589, 594, 599, 605, 610, 616

G
get() (bugsy.Bugsy method), 127, 132, 138, 143, 148,

154, 159, 165, 170, 175, 181, 186, 192, 197,
202, 208, 213, 219, 224, 229, 235, 240, 246,
251, 256, 262, 267, 273, 278, 283, 289, 294,
300, 305, 310, 316, 321, 327, 332, 337, 343,

Index 625

Bugzilla Documentation, Release 0.2

348, 354, 359, 364, 370, 375, 381, 386, 391,
397, 402, 408, 413, 418, 424, 429, 435, 440,
445, 451, 456, 462, 467, 472, 478, 483, 489,
494, 499, 505, 510, 516, 521, 526, 532, 537,
543, 548, 553, 559, 564, 570, 575, 580, 586,
591, 597, 602, 607, 613

get_comments() (bugsy.Bug method), 128, 133, 139, 144,
150, 155, 160, 166, 171, 177, 182, 187, 193,
198, 204, 209, 214, 220, 225, 231, 236, 241,
247, 252, 258, 263, 268, 274, 279, 285, 290,
295, 301, 306, 312, 317, 322, 328, 333, 339,
344, 349, 355, 360, 366, 371, 376, 382, 387,
393, 398, 403, 409, 414, 420, 425, 430, 436,
441, 447, 452, 457, 463, 468, 474, 479, 484,
490, 495, 501, 506, 511, 517, 522, 528, 533,
538, 544, 549, 555, 560, 565, 571, 576, 582,
587, 592, 598, 603, 609, 614

I
id (bugsy.Bug attribute), 128, 134, 139, 144, 150, 155,

161, 166, 171, 177, 182, 188, 193, 198, 204,
209, 215, 220, 225, 231, 236, 242, 247, 252,
258, 263, 269, 274, 279, 285, 290, 296, 301,
306, 312, 317, 323, 328, 333, 339, 344, 350,
355, 360, 366, 371, 377, 382, 387, 393, 398,
404, 409, 414, 420, 425, 431, 436, 441, 447,
452, 458, 463, 468, 474, 479, 485, 490, 495,
501, 506, 512, 517, 522, 528, 533, 539, 544,
549, 555, 560, 566, 571, 576, 582, 587, 593,
598, 603, 609, 614

id (bugsy.Comment attribute), 130, 135, 140, 146, 151,
157, 162, 167, 173, 178, 184, 189, 194, 200,
205, 211, 216, 221, 227, 232, 238, 243, 248,
254, 259, 265, 270, 275, 281, 286, 292, 297,
302, 308, 313, 319, 324, 329, 335, 340, 346,
351, 356, 362, 367, 373, 378, 383, 389, 394,
400, 405, 410, 416, 421, 427, 432, 437, 443,
448, 454, 459, 464, 470, 475, 481, 486, 491,
497, 502, 508, 513, 518, 524, 529, 535, 540,
545, 551, 556, 562, 567, 572, 578, 583, 589,
594, 599, 605, 610, 616

include_fields() (bugsy.Search method), 130, 136, 141,
147, 152, 157, 163, 168, 174, 179, 184, 190,
195, 201, 206, 211, 217, 222, 228, 233, 238,
244, 249, 255, 260, 265, 271, 276, 282, 287,
292, 298, 303, 309, 314, 319, 325, 330, 336,
341, 346, 352, 357, 363, 368, 373, 379, 384,
390, 395, 400, 406, 411, 417, 422, 427, 433,
438, 444, 449, 454, 460, 465, 471, 476, 481,
487, 492, 498, 503, 508, 514, 519, 525, 530,
535, 541, 546, 552, 557, 562, 568, 573, 579,
584, 589, 595, 600, 606, 611, 617

is_private (bugsy.Comment attribute), 130, 135, 140, 146,
151, 157, 162, 167, 173, 178, 184, 189, 194,

200, 205, 211, 216, 221, 227, 232, 238, 243,
248, 254, 259, 265, 270, 275, 281, 286, 292,
297, 302, 308, 313, 319, 324, 329, 335, 340,
346, 351, 356, 362, 367, 373, 378, 383, 389,
394, 400, 405, 410, 416, 421, 427, 432, 437,
443, 448, 454, 459, 464, 470, 475, 481, 486,
491, 497, 502, 508, 513, 518, 524, 529, 535,
540, 545, 551, 556, 562, 567, 572, 578, 583,
589, 594, 599, 605, 610, 616

K
keywords() (bugsy.Search method), 131, 136, 141, 147,

152, 158, 163, 168, 174, 179, 185, 190, 195,
201, 206, 212, 217, 222, 228, 233, 239, 244,
249, 255, 260, 266, 271, 276, 282, 287, 293,
298, 303, 309, 314, 320, 325, 330, 336, 341,
347, 352, 357, 363, 368, 374, 379, 384, 390,
395, 401, 406, 411, 417, 422, 428, 433, 438,
444, 449, 455, 460, 465, 471, 476, 482, 487,
492, 498, 503, 509, 514, 519, 525, 530, 536,
541, 546, 552, 557, 563, 568, 573, 579, 584,
590, 595, 600, 606, 611, 617

L
LoginException (class in bugsy), 127, 133, 138, 143, 149,

154, 160, 165, 170, 176, 181, 187, 192, 197,
203, 208, 214, 219, 224, 230, 235, 241, 246,
251, 257, 262, 268, 273, 278, 284, 289, 295,
300, 305, 311, 316, 322, 327, 332, 338, 343,
349, 354, 359, 365, 370, 376, 381, 386, 392,
397, 403, 408, 413, 419, 424, 430, 435, 440,
446, 451, 457, 462, 467, 473, 478, 484, 489,
494, 500, 505, 511, 516, 521, 527, 532, 538,
543, 548, 554, 559, 565, 570, 575, 581, 586,
592, 597, 602, 608, 613

O
OS (bugsy.Bug attribute), 127, 133, 138, 144, 149, 154,

160, 165, 171, 176, 181, 187, 192, 198, 203,
208, 214, 219, 225, 230, 235, 241, 246, 252,
257, 262, 268, 273, 279, 284, 289, 295, 300,
306, 311, 316, 322, 327, 333, 338, 343, 349,
354, 360, 365, 370, 376, 381, 387, 392, 397,
403, 408, 414, 419, 424, 430, 435, 441, 446,
451, 457, 462, 468, 473, 478, 484, 489, 495,
500, 505, 511, 516, 522, 527, 532, 538, 543,
549, 554, 559, 565, 570, 576, 581, 586, 592,
597, 603, 608, 613

P
platform (bugsy.Bug attribute), 128, 134, 139, 144, 150,

155, 161, 166, 171, 177, 182, 188, 193, 198,
204, 209, 215, 220, 225, 231, 236, 242, 247,
252, 258, 263, 269, 274, 279, 285, 290, 296,

626 Index

Bugzilla Documentation, Release 0.2

301, 306, 312, 317, 323, 328, 333, 339, 344,
350, 355, 360, 366, 371, 377, 382, 387, 393,
398, 404, 409, 414, 420, 425, 431, 436, 441,
447, 452, 458, 463, 468, 474, 479, 485, 490,
495, 501, 506, 512, 517, 522, 528, 533, 539,
544, 549, 555, 560, 566, 571, 576, 582, 587,
593, 598, 603, 609, 614

product (bugsy.Bug attribute), 128, 134, 139, 144, 150,
155, 161, 166, 171, 177, 182, 188, 193, 198,
204, 209, 215, 220, 225, 231, 236, 242, 247,
252, 258, 263, 269, 274, 279, 285, 290, 296,
301, 306, 312, 317, 323, 328, 333, 339, 344,
350, 355, 360, 366, 371, 377, 382, 387, 393,
398, 404, 409, 414, 420, 425, 431, 436, 441,
447, 452, 458, 463, 468, 474, 479, 485, 490,
495, 501, 506, 512, 517, 522, 528, 533, 539,
544, 549, 555, 560, 566, 571, 576, 582, 587,
593, 598, 603, 609, 614

put() (bugsy.Bugsy method), 127, 132, 138, 143, 148,
154, 159, 165, 170, 175, 181, 186, 192, 197,
202, 208, 213, 219, 224, 229, 235, 240, 246,
251, 256, 262, 267, 273, 278, 283, 289, 294,
300, 305, 310, 316, 321, 327, 332, 337, 343,
348, 354, 359, 364, 370, 375, 381, 386, 391,
397, 402, 408, 413, 418, 424, 429, 435, 440,
445, 451, 456, 462, 467, 472, 478, 483, 489,
494, 499, 505, 510, 516, 521, 526, 532, 537,
543, 548, 553, 559, 564, 570, 575, 580, 586,
591, 597, 602, 607, 613

R
remove_tags() (bugsy.Comment method), 130, 135, 140,

146, 151, 157, 162, 167, 173, 178, 184, 189,
194, 200, 205, 211, 216, 221, 227, 232, 238,
243, 248, 254, 259, 265, 270, 275, 281, 286,
292, 297, 302, 308, 313, 319, 324, 329, 335,
340, 346, 351, 356, 362, 367, 373, 378, 383,
389, 394, 400, 405, 410, 416, 421, 427, 432,
437, 443, 448, 454, 459, 464, 470, 475, 481,
486, 491, 497, 502, 508, 513, 518, 524, 529,
535, 540, 545, 551, 556, 562, 567, 572, 578,
583, 589, 594, 599, 605, 610, 616

request() (bugsy.Bugsy method), 127, 133, 138, 143, 149,
154, 160, 165, 170, 176, 181, 187, 192, 197,
203, 208, 214, 219, 224, 230, 235, 241, 246,
251, 257, 262, 268, 273, 278, 284, 289, 295,
300, 305, 311, 316, 322, 327, 332, 338, 343,
349, 354, 359, 365, 370, 376, 381, 386, 392,
397, 403, 408, 413, 419, 424, 430, 435, 440,
446, 451, 457, 462, 467, 473, 478, 484, 489,
494, 500, 505, 511, 516, 521, 527, 532, 538,
543, 548, 554, 559, 565, 570, 575, 581, 586,
592, 597, 602, 608, 613

resolution (bugsy.Bug attribute), 128, 134, 139, 145, 150,

155, 161, 166, 172, 177, 182, 188, 193, 199,
204, 209, 215, 220, 226, 231, 236, 242, 247,
253, 258, 263, 269, 274, 280, 285, 290, 296,
301, 307, 312, 317, 323, 328, 334, 339, 344,
350, 355, 361, 366, 371, 377, 382, 388, 393,
398, 404, 409, 415, 420, 425, 431, 436, 442,
447, 452, 458, 463, 469, 474, 479, 485, 490,
496, 501, 506, 512, 517, 523, 528, 533, 539,
544, 550, 555, 560, 566, 571, 577, 582, 587,
593, 598, 604, 609, 615

S
Search (class in bugsy), 130, 135, 141, 146, 152, 157,

162, 168, 173, 179, 184, 189, 195, 200, 206,
211, 216, 222, 227, 233, 238, 243, 249, 254,
260, 265, 270, 276, 281, 287, 292, 297, 303,
308, 314, 319, 324, 330, 335, 341, 346, 351,
357, 362, 368, 373, 378, 384, 389, 395, 400,
405, 411, 416, 422, 427, 432, 438, 443, 449,
454, 459, 465, 470, 476, 481, 486, 492, 497,
503, 508, 513, 519, 524, 530, 535, 540, 546,
551, 557, 562, 567, 573, 578, 584, 589, 594,
600, 605, 611, 616

search() (bugsy.Search method), 131, 136, 142, 147, 152,
158, 163, 169, 174, 179, 185, 190, 196, 201,
206, 212, 217, 223, 228, 233, 239, 244, 250,
255, 260, 266, 271, 277, 282, 287, 293, 298,
304, 309, 314, 320, 325, 331, 336, 341, 347,
352, 358, 363, 368, 374, 379, 385, 390, 395,
401, 406, 412, 417, 422, 428, 433, 439, 444,
449, 455, 460, 466, 471, 476, 482, 487, 493,
498, 503, 509, 514, 520, 525, 530, 536, 541,
547, 552, 557, 563, 568, 574, 579, 584, 590,
595, 601, 606, 611, 617

status (bugsy.Bug attribute), 129, 134, 139, 145, 150, 156,
161, 166, 172, 177, 183, 188, 193, 199, 204,
210, 215, 220, 226, 231, 237, 242, 247, 253,
258, 264, 269, 274, 280, 285, 291, 296, 301,
307, 312, 318, 323, 328, 334, 339, 345, 350,
355, 361, 366, 372, 377, 382, 388, 393, 399,
404, 409, 415, 420, 426, 431, 436, 442, 447,
453, 458, 463, 469, 474, 480, 485, 490, 496,
501, 507, 512, 517, 523, 528, 534, 539, 544,
550, 555, 561, 566, 571, 577, 582, 588, 593,
598, 604, 609, 615

summary (bugsy.Bug attribute), 129, 134, 139, 145, 150,
156, 161, 166, 172, 177, 183, 188, 193, 199,
204, 210, 215, 220, 226, 231, 237, 242, 247,
253, 258, 264, 269, 274, 280, 285, 291, 296,
301, 307, 312, 318, 323, 328, 334, 339, 345,
350, 355, 361, 366, 372, 377, 382, 388, 393,
399, 404, 409, 415, 420, 426, 431, 436, 442,
447, 453, 458, 463, 469, 474, 480, 485, 490,
496, 501, 507, 512, 517, 523, 528, 534, 539,

Index 627

Bugzilla Documentation, Release 0.2

544, 550, 555, 561, 566, 571, 577, 582, 588,
593, 598, 604, 609, 615

summary() (bugsy.Search method), 131, 136, 142, 147,
153, 158, 163, 169, 174, 180, 185, 190, 196,
201, 207, 212, 217, 223, 228, 234, 239, 244,
250, 255, 261, 266, 271, 277, 282, 288, 293,
298, 304, 309, 315, 320, 325, 331, 336, 342,
347, 352, 358, 363, 369, 374, 379, 385, 390,
396, 401, 406, 412, 417, 423, 428, 433, 439,
444, 450, 455, 460, 466, 471, 477, 482, 487,
493, 498, 504, 509, 514, 520, 525, 531, 536,
541, 547, 552, 558, 563, 568, 574, 579, 585,
590, 595, 601, 606, 612, 617

T
tags (bugsy.Comment attribute), 130, 135, 140, 146, 151,

157, 162, 167, 173, 178, 184, 189, 194, 200,
205, 211, 216, 221, 227, 232, 238, 243, 248,
254, 259, 265, 270, 275, 281, 286, 292, 297,
302, 308, 313, 319, 324, 329, 335, 340, 346,
351, 356, 362, 367, 373, 378, 383, 389, 394,
400, 405, 410, 416, 421, 427, 432, 437, 443,
448, 454, 459, 464, 470, 475, 481, 486, 491,
497, 502, 508, 513, 518, 524, 529, 535, 540,
545, 551, 556, 562, 567, 572, 578, 583, 589,
594, 599, 605, 610, 616

text (bugsy.Comment attribute), 130, 135, 141, 146, 151,
157, 162, 168, 173, 178, 184, 189, 195, 200,
205, 211, 216, 222, 227, 232, 238, 243, 249,
254, 259, 265, 270, 276, 281, 286, 292, 297,
303, 308, 313, 319, 324, 330, 335, 340, 346,
351, 357, 362, 367, 373, 378, 384, 389, 394,
400, 405, 411, 416, 421, 427, 432, 438, 443,
448, 454, 459, 465, 470, 475, 481, 486, 492,
497, 502, 508, 513, 519, 524, 529, 535, 540,
546, 551, 556, 562, 567, 573, 578, 583, 589,
594, 600, 605, 610, 616

time (bugsy.Comment attribute), 130, 135, 141, 146, 151,
157, 162, 168, 173, 178, 184, 189, 195, 200,
205, 211, 216, 222, 227, 232, 238, 243, 249,
254, 259, 265, 270, 276, 281, 286, 292, 297,
303, 308, 313, 319, 324, 330, 335, 340, 346,
351, 357, 362, 367, 373, 378, 384, 389, 394,
400, 405, 411, 416, 421, 427, 432, 438, 443,
448, 454, 459, 465, 470, 475, 481, 486, 492,
497, 502, 508, 513, 519, 524, 529, 535, 540,
546, 551, 556, 562, 567, 573, 578, 583, 589,
594, 600, 605, 610, 616

timeframe() (bugsy.Search method), 131, 137, 142, 147,
153, 158, 164, 169, 174, 180, 185, 191, 196,
201, 207, 212, 218, 223, 228, 234, 239, 245,
250, 255, 261, 266, 272, 277, 282, 288, 293,
299, 304, 309, 315, 320, 326, 331, 336, 342,
347, 353, 358, 363, 369, 374, 380, 385, 390,

396, 401, 407, 412, 417, 423, 428, 434, 439,
444, 450, 455, 461, 466, 471, 477, 482, 488,
493, 498, 504, 509, 515, 520, 525, 531, 536,
542, 547, 552, 558, 563, 569, 574, 579, 585,
590, 596, 601, 606, 612, 617

to_dict() (bugsy.Bug method), 129, 134, 139, 145, 150,
156, 161, 166, 172, 177, 183, 188, 193, 199,
204, 210, 215, 220, 226, 231, 237, 242, 247,
253, 258, 264, 269, 274, 280, 285, 291, 296,
301, 307, 312, 318, 323, 328, 334, 339, 345,
350, 355, 361, 366, 372, 377, 382, 388, 393,
399, 404, 409, 415, 420, 426, 431, 436, 442,
447, 453, 458, 463, 469, 474, 480, 485, 490,
496, 501, 507, 512, 517, 523, 528, 534, 539,
544, 550, 555, 561, 566, 571, 577, 582, 588,
593, 598, 604, 609, 615

U
update() (bugsy.Bug method), 129, 134, 140, 145, 150,

156, 161, 167, 172, 177, 183, 188, 194, 199,
204, 210, 215, 221, 226, 231, 237, 242, 248,
253, 258, 264, 269, 275, 280, 285, 291, 296,
302, 307, 312, 318, 323, 329, 334, 339, 345,
350, 356, 361, 366, 372, 377, 383, 388, 393,
399, 404, 410, 415, 420, 426, 431, 437, 442,
447, 453, 458, 464, 469, 474, 480, 485, 491,
496, 501, 507, 512, 518, 523, 528, 534, 539,
545, 550, 555, 561, 566, 572, 577, 582, 588,
593, 599, 604, 609, 615

V
version (bugsy.Bug attribute), 129, 134, 140, 145, 150,

156, 161, 167, 172, 177, 183, 188, 194, 199,
204, 210, 215, 221, 226, 231, 237, 242, 248,
253, 258, 264, 269, 275, 280, 285, 291, 296,
302, 307, 312, 318, 323, 329, 334, 339, 345,
350, 356, 361, 366, 372, 377, 383, 388, 393,
399, 404, 410, 415, 420, 426, 431, 437, 442,
447, 453, 458, 464, 469, 474, 480, 485, 491,
496, 501, 507, 512, 518, 523, 528, 534, 539,
545, 550, 555, 561, 566, 572, 577, 582, 588,
593, 599, 604, 609, 615

W
whiteboard() (bugsy.Search method), 131, 137, 142, 147,

153, 158, 164, 169, 174, 180, 185, 191, 196,
201, 207, 212, 218, 223, 228, 234, 239, 245,
250, 255, 261, 266, 272, 277, 282, 288, 293,
299, 304, 309, 315, 320, 326, 331, 336, 342,
347, 353, 358, 363, 369, 374, 380, 385, 390,
396, 401, 407, 412, 417, 423, 428, 434, 439,
444, 450, 455, 461, 466, 471, 477, 482, 488,
493, 498, 504, 509, 515, 520, 525, 531, 536,

628 Index

Bugzilla Documentation, Release 0.2

542, 547, 552, 558, 563, 569, 574, 579, 585,
590, 596, 601, 606, 612, 617

Index 629

	Installing Bugsy
	Using Bugsy
	Getting a bug from Bugzilla
	Creating a new bug
	Searching Bugzilla
	Comments

	Indices and tables
	Python Module Index

