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Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)
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CHAPTER 1

Installing Bugsy

To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy
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CHAPTER 2

Using Bugsy

2.1 Getting a bug from Bugzilla

Getting a bug is quite simple. Create a Bugsy object and then get the bug number that you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

2.2 Creating a new bug

To create a new bug, create a Bug object, populate it with the items that you need and then use the Bugsy object to put
the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

2.3 Searching Bugzilla

To search for bugs you will need to create a Bugsy object and then you can call search_for and chain the search. The
Search API is a Fluent API - you just chain the items that you need and then call search when the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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2.4 Comments

Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4.1 Welcome to Bugsy!

Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy

To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla

Getting a bug is quite simple. Create a Bugsy object and then get the bug number that you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
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Creating a new bug

To create a new bug, create a Bug object, populate it with the items that you need and then use the Bugsy object to put
the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla

To search for bugs you will need to create a Bugsy object and then you can call search_for and chain the search. The
Search API is a Fluent API - you just chain the items that you need and then call search when the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments

Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
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bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug
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import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
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bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy
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Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

2.4. Comments 11
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import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

12 Chapter 2. Using Bugsy
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

14 Chapter 2. Using Bugsy
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

2.4. Comments 15
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

18 Chapter 2. Using Bugsy
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

32 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface


Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

34 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface


Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

96 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface


Bugzilla Documentation, Release 0.2

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

106 Chapter 2. Using Bugsy

https://en.wikipedia.org/wiki/Fluent_interface


Bugzilla Documentation, Release 0.2

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install
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Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:
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Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")

bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class
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Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Welcome to Bugsy! Bugsy is a tool that allows you to programmatically work with Bugzilla using its native REST
API.

To use you will do

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug123456.status = 'RESOLVED'
bug123456.resolution = 'FIXED'
bugzilla.put(bug123456)

Installing Bugsy To install Bugsy, simply use pip or easy install

Pip

pip install bugsy

easy_install

easy_install bugsy

Using Bugsy

Getting a bug from Bugzilla Getting a bug is quite simple. Create a Bugsy object and then get the bug number that
you want.

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)

Creating a new bug To create a new bug, create a Bug object, populate it with the items that you need and then use
the Bugsy object to put the bug into Bugzilla

import bugsy
bug = bugsy.Bug()
bug.summary = "I really realy love cheese"
bug.add_comment("and I really want sausages with it!")
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bugzilla = bugsy.Bugsy("username", "password")
bugzilla.put(bug)
bug.id #returns the bug id from Bugzilla

Searching Bugzilla To search for bugs you will need to create a Bugsy object and then you can call search_for and
chain the search. The Search API is a Fluent API - you just chain the items that you need and then call search when
the search is complete.

import bugsy
bugzilla = bugsy.Bugsy()
bugs = bugzilla.search_for\

.keywords("checkin-needed")\

.include_fields("flags")\

.search()

More details can be found in from the Search class

Comments Getting comments from a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
comments = bug.get_comments()
comments[0].text # Returns "I <3 Sausages"

Adding comments to a bug

import bugsy
bugzilla = bugsy.Bugsy()
bug = bugzilla.get(123456)
bug.add_comment("And I love bacon too!")

To see further details look at:

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 153



Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

166 Chapter 2. Using Bugsy

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py


Bugzilla Documentation, Release 0.2

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

170 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest


Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

178 Chapter 2. Using Bugsy



Bugzilla Documentation, Release 0.2

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4. Comments 185



Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

2.4. Comments 203

https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py


Bugzilla Documentation, Release 0.2

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 233



Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

2.4. Comments 261



Bugzilla Documentation, Release 0.2

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

314 Chapter 2. Using Bugsy



Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

320 Chapter 2. Using Bugsy



Bugzilla Documentation, Release 0.2

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

2.4. Comments 417



Bugzilla Documentation, Release 0.2

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

2.4. Comments 437



Bugzilla Documentation, Release 0.2

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 449



Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

476 Chapter 2. Using Bugsy



Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

2.4. Comments 503



Bugzilla Documentation, Release 0.2

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

520 Chapter 2. Using Bugsy



Bugzilla Documentation, Release 0.2

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.
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Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to
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https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"
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__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution
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>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.
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creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)
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include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.
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>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General
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get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised
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Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object
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Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.
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__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.
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>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"
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to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments
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tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’
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keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy
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Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

602 Chapter 2. Using Bugsy

https://bugzilla.mozilla.org/rest


Bugzilla Documentation, Release 0.2

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"
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product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")
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bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods
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Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

Indices and tables

• genindex

• modindex

• search

Bugsy
class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,

bugzilla_url=’https://bugzilla.mozilla.org/rest’)
Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None

• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
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put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

Bug
class bugsy.Bug(bugsy=None, **kwargs)

This represents a Bugzilla Bug

OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee
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>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product

>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'
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version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

Comment Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments

attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.
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Prefer creation_time instead.

Search Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.
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>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search

whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")

2.4.2 Indices and tables

• genindex

• modindex

• search

2.4.3 Bugsy

class bugsy.Bugsy(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Bugsy allows easy getting and putting of Bugzilla bugs

__init__(username=None, password=None, userid=None, cookie=None, api_key=None,
bugzilla_url=’https://bugzilla.mozilla.org/rest’)

Initialises a new instance of Bugsy

Parameters

• username – Username to login with. Defaults to None

• password – Password to login with. Defaults to None

• userid – User ID to login with. Defaults to None

• cookie – Cookie to login with. Defaults to None
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• apikey – API key to use. Defaults to None.

• bugzilla_url – URL endpoint to interact with. Defaults to

https://bugzilla.mozilla.org/rest

If a api_key is passed in, Bugsy will use this for authenticating requests. While not required to perform
requests, if a username is passed in along with api_key, we will validate that the api key is valid for this
username. Otherwise the api key is blindly used later.

If a username AND password are passed in Bugsy will try get a login token from Bugzilla. If we can’t
login then a LoginException will be raised.

If a userid AND cookie are passed in Bugsy will create a login token from them. If no username was
passed in it will then try to get the username from Bugzilla.

__weakref__
list of weak references to the object (if defined)

get(bug_number)
Get a bug from Bugzilla. If there is a login token created during object initialisation it will be part of the
query string passed to Bugzilla

Parameters bug_number – Bug Number that will be searched. If found will return a Bug
object.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)

put(bug)
This method allows you to create or update a bug on Bugzilla. You will have had to pass in a valid
username and password to the object initialisation and recieved back a token.

Parameters bug – A Bug object either created by hand or by using get()

If there is no valid token then a BugsyException will be raised. If the object passed in is not a Bug then a
BugsyException will be raised.

>>> bugzilla = Bugsy()
>>> bug = bugzilla.get(123456)
>>> bug.summary = "I like cheese and sausages"
>>> bugzilla.put(bug)

request(path, method=’GET’, **kwargs)
Perform a HTTP request.

Given a relative Bugzilla URL path, an optional request method, and arguments suitable for re-
quests.Request(), perform a HTTP request.

class bugsy.BugsyException(msg)
If while interacting with Bugzilla and we try do something that is not supported this error will be raised.

class bugsy.LoginException(msg)
If a username and password are passed in but we don’t receive a token then this error will be raised.

2.4.4 Bug

class bugsy.Bug(bugsy=None, **kwargs)
This represents a Bugzilla Bug
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OS
Property for getting or setting the OS that the bug occured on

>>> bug.OS
"All"

__init__(bugsy=None, **kwargs)
Defaults are set if there are no kwargs passed in. To pass in a dict create the Bug object like the following

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

>>> bug = Bug(**myDict)

__weakref__
list of weak references to the object (if defined)

add_comment(comment)
Adds a comment to a bug. If the bug object does not have a bug ID (ie you are creating a bug) then you
will need to also call put on the Bugsy class.

>>> bug.add_comment("I like sausages")
>>> bugzilla.put(bug)

If it does have a bug id then this will immediately post to the server

>>> bug.add_comment("I like eggs too")

More examples can be found at: https://github.com/AutomatedTester/Bugsy/blob/master/example/add_comments.py

assigned_to
Property for getting the bug assignee

>>> bug.assigned_to
"automatedtester@mozilla.com"

component
Property for getting the bug component

>>> bug.component
General

get_comments()
Obtain comments for this bug.

Returns a list of Comment instances.

id
Property for getting the ID of a bug.

>>> bug.id
123456

platform
Property for getting the bug platform

>>> bug.platform
"ARM"

product
Property for getting the bug product
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>>> bug.product
Core

resolution
Property for getting or setting the bug resolution

>>> bug.resolution
"FIXED"

status
Property for getting or setting the bug status

>>> bug.status
"REOPENED"

summary
Property for getting and setting the bug summary

>>> bug.summary
"I like cheese"

to_dict()
Return the raw dict that is used inside this object

update()
Update this object with the latest changes from Bugzilla

>>> bug.status
'NEW'
#Changes happen on Bugzilla
>>> bug.update()
>>> bug.status
'FIXED'

version
Property for getting the bug platform

>>> bug.version
"TRUNK"

class bugsy.BugException(msg)
If we try do something that is not allowed to a bug then this error is raised

2.4.5 Comment

Changed in version 0.3.

class bugsy.Comment(bugsy=None, **kwargs)
Represents a single Bugzilla comment.

To get comments you need to do the following

>>> bugs = bugzilla.search_for.keywords("checkin-needed").search()
>>> comments = bugs[0].get_comments()
>>> # Returns the comment 0 of the first checkin-needed bug
>>> comments[0].text

add_tags(tags)
Add tags to the comments
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attachment_id
If the comment was made on an attachment, return the ID of that attachment. Otherwise it will return
None.

author
Return the login name of the comment’s author.

bug_id
Return the ID of the bug that this comment is on.

creation_time
Return the time (in Bugzilla’s timezone) that the comment was added.

creator
Return the login name of the comment’s author.

id
Return the comment id that is associated with Bugzilla.

is_private
Return True if this comment is private (only visible to a certain group called the “insidergroup”).

remove_tags(tags)
Add tags to the comments

tags
Return a set of comment tags currently set for the comment.

text
Return the text that is in this comment

>>> comment.text # David really likes cheese apparently

time
This is exactly same as creation_time.

For compatibility, time is still usable. However, please note that time may be deprecated and removed in a
future release.

Prefer creation_time instead.

2.4.6 Search

Changed in version 0.2.

class bugsy.Search(bugsy)
This allows searching for bugs in Bugzilla

__init__(bugsy)
Initialises the search object

Parameters bugsy – Bugsy instance to use to connect to Bugzilla.

__weakref__
list of weak references to the object (if defined)

assigned_to(*args)
When search() is called it will search for bugs assigned to these users

Parameters args – items passed in will be turned into a list

Returns Search
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>>> bugzilla.search_for.assigned_to("dburns@mozilla.com")

bug_number(bug_numbers)
When you want to search for a bugs and be able to change the fields returned.

Parameters bug_numbers – A string for the bug number or a list of strings

Returns Search

>>> bugzilla.search_for.bug_number(['123123', '123456'])

change_history_fields(fields, value=None)

include_fields(*args)
Include fields is the fields that you want to be returned when searching. These are in addition to the fields
that are always included below.

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.include_fields("flags")

The following fields are always included in search: ‘version’, ‘id’, ‘summary’, ‘status’, ‘op_sys’, ‘res-
olution’, ‘product’, ‘component’, ‘platform’

keywords(*args)
When search() is called it will search for the keywords passed in here

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.keywords("checkin-needed")

search()
Call the Bugzilla endpoint that will do the search. It will take the information used in other methods on
the Search object and build up the query string. If no bugs are found then an empty list is returned.

>>> bugs = bugzilla.search_for\
... .keywords("checkin-needed")\
... .include_fields("flags")\
... .search()

summary(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.summary("663399")

timeframe(start, end)
When you want to search bugs for a certain time frame.

Parameters

• start –

• end –

Returns Search
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whiteboard(*args)
When search is called it will search for bugs with the words passed into the methods

Parameters args – items passed in will be turned into a list

Returns Search

>>> bugzilla.search_for.whiteboard("affects")
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